Simbol | Nama | Penjelasan | Contoh |
---|---|---|---|
Dibaca sebagai | |||
Kategori | |||
= | kesamaan | x = y berarti x and y mewakili hal atau nilai yang sama. | 1 + 1 = 2 |
sama dengan | |||
umum | |||
≠ | Ketidaksamaan | x ≠ y berarti x dan y tidak mewakili hal atau nilai yang sama. | 1 ≠ 2 |
tidak sama dengan | |||
umum | |||
< > | ketidaksamaan | x < y berarti x lebih kecil dari y. x > y means x lebih besar dari y. | 3 < 4 5 > 4 |
lebih kecil dari; lebih besar dari | |||
order theory | |||
≤ ≥ | inequality | x ≤ y berarti x lebih kecil dari atau sama dengan y. x ≥ y berarti x lebih besar dari atau sama dengan y. | 3 ≤ 4 and 5 ≤ 5 5 ≥ 4 and 5 ≥ 5 |
lebih kecil dari atau sama dengan, lebih besar dari atau sama dengan | |||
order theory | |||
+ | tambah | 4 + 6 berarti jumlah antara 4 dan 6. | 2 + 7 = 9 |
tambah | |||
aritmatika | |||
disjoint union | A1 + A2 means the disjoint union of sets A1 and A2. | A1={1,2,3,4} ∧ A2={2,4,5,7} ⇒ A 1 + A2 = {(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (5,2), (7,2)} | |
the disjoint union of … and … | |||
teori himpunan | |||
− | kurang | 9 − 4 berarti 9 dikurangi 4. | 8 − 3 = 5 |
kurang | |||
aritmatika | |||
tanda negatif | −3 berarti negatif dari angka 3. | −(−5) = 5 | |
negatif | |||
aritmatika | |||
set-theoretic complement | A − B berarti himpunan yang mempunyai semua anggota dari A yang tidak terdapat pada B. | {1,2,4} − {1,3,4} = {2} | |
minus; without | |||
set theory | |||
× | multiplication | 3 × 4 berarti perkalian 3 oleh 4. | 7 × 8 = 56 |
kali | |||
aritmatika | |||
Cartesian product | X×Y means the set of all ordered pairs with the first element of each pair selected from X and the second element selected from Y. | {1,2} × {3,4} = {(1,3),(1,4),(2,3),(2,4)} | |
the Cartesian product of … and …; the direct product of … and … | |||
teori himpunan | |||
cross product | u × v means the cross product of vectors u and v | (1,2,5) × (3,4,−1) = (−22, 16, − 2) | |
cross | |||
vector algebra | |||
÷ / | division | 6 ÷ 3 atau 6/3 berati 6 dibagi 3. | 2 ÷ 4 = .5 12/4 = 3 |
bagi | |||
aritmatika | |||
√ | square root | √x berarti bilangan positif yang kuadratnya x. | √4 = 2 |
akar kuadrat | |||
bilangan real | |||
complex square root | if z = r exp(iφ) is represented in polar coordinates with -π < φ ≤ π, then √z = √r exp(iφ/2). | √(-1) = i | |
the complex square root of; square root | |||
Bilangan kompleks | |||
| | | absolute value | |x| means the distance in the real linecomplex plane) between x and zero. (or the | |3| = 3, |-5| = |5| |i| = 1, |3+4i| = 5 |
nilai mutlak dari | |||
numbers | |||
! | factorial | n! adalah hasil dari 1×2×...×n. | 4! = 1 × 2 × 3 × 4 = 24 |
faktorial | |||
combinatorics | |||
~ | probability distribution | X ~ D, means the random variable XD. has the probability distribution | X ~ N(0,1), the standard normal distribution |
has distribution | |||
statistika | |||
⇒ → ⊃ | material implication | A ⇒ B means if A is true then B is also true; if A is false then nothing is said about B. → may mean the same as ⇒, or it may have the meaning for functions given below. ⊃ may mean the same as ⇒, or it may have the meaning for superset given below. | x = 2 ⇒ x2 = 4 is true, but x2 = 4 ⇒ x = 2 is in general false (since x could be −2). |
implies; if .. then | |||
propositional logic | |||
⇔ ↔ | material equivalence | A ⇔ B means A is true if B is true and A is false if B is false. | x + 5 = y +2 ⇔ x + 3 = y |
if and only if; iff | |||
propositional logic | |||
¬ ˜ | logical negation | The statement ¬A is true if and only if A is false. A slash placed through another operator is the same as "¬" placed in front. | ¬(¬A) ⇔ A x ≠ y ⇔ ¬(x = y) |
not | |||
propositional logic | |||
∧ | logical conjunction or meet in a lattice | The statement A ∧ B is true if A and B are both true; else it is false. | n < 4 ∧ n >2 ⇔ n = 3 when n is a natural number. |
and | |||
propositional logic, lattice theory | |||
∨ | logical disjunction or join in a lattice | The statement A ∨ B is true if A or B (or both) are true; if both are false, the statement is false. | n ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3 when n is a natural number. |
or | |||
propositional logic, lattice theory | |||
⊕ ⊻ | exclusive or | The statement A ⊕ B is true when either A or B, but not both, are true. AB means the same. ⊻ | (¬A) ⊕ A is always true, AA is always false. ⊕ |
xor | |||
propositional logic, Boolean algebra | |||
∀ | universal quantification | ∀ x: P(x) means P(x) is true for all x. | ∀ n ∈ N: n2 ≥ n. |
for all; for any; for each | |||
predicate logic | |||
∃ | existential quantification | ∃ x: P(x) means there is at least one xP(x) is true. such that | ∃ n ∈ N: n is even. |
there exists | |||
predicate logic | |||
∃! | uniqueness quantification | ∃! x: P(x) means there is exactly one xP(x) is true. such that | ∃! n ∈ N: n + 5 = 2n. |
there exists exactly one | |||
predicate logic | |||
:= ≡ :⇔ | definition | x := y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence). P :⇔ Q means P is defined to be logically equivalent to Q. | cosh x := (1/2)(exp x + exp (−x)) A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B) |
is defined as | |||
everywhere | |||
{ , } | set brackets | {a,b,c} means the set consisting of a, b, and c. | N = {0,1,2,...} |
the set of ... | |||
teori himpunan | |||
{ : } { | } | set builder notation | {x : P(x)} means the set of all x for which P(x) is true. {x | P(x)} is the same as {x : P(x)}. | {n ∈ N : n2 < 20} = {0,1,2,3,4} |
the set of ... such that ... | |||
teori himpunan | |||
∅ {} | himpunan kosong | ∅ berarti himpunan yang tidak memiliki elemen. {} juga berarti hal yang sama. | {n ∈ N : 1 < n2 < 4} = ∅ |
himpunan kosong | |||
teori himpunan | |||
∈ ∉ | set membership | a ∈ S means a is an element of the set S; a ∉ S means a is not an element of S. | (1/2)−1 ∈ N 2 −1 ∉ N |
is an element of; is not an element of | |||
everywhere, teori himpunan | |||
⊆ ⊂ | subset | A ⊆ B means every element of A is also element of B. A ⊂ B means A ⊆ B but A ≠ B. | A ∩ B ⊆ A; Q ⊂ R |
is a subset of | |||
teori himpunan | |||
⊇ ⊃ | superset | A ⊇ B means every element of B is also element of A. A ⊃ B means A ⊇ B but A ≠ B. | A ∪ B ⊇ B; R ⊃ Q |
is a superset of | |||
teori himpunan | |||
∪ | set-theoretic union | A ∪ B means the set that contains all the elements from A and also all those from B, but no others. | A ⊆ B ⇔ A ∪ B = B |
the union of ... and ...; union | |||
teori himpunan | |||
∩ | set-theoretic intersection | A ∩ B means the set that contains all those elements that A and B have in common. | {x ∈ R : x2 = 1} ∩ N = {1} |
intersected with; intersect | |||
teori himpunan | |||
\ | set-theoretic complement | A \ B means the set that contains all those elements of A that are not in B. | {1,2,3,4} \ {3,4,5,6} = {1,2} |
minus; without | |||
teori himpunan | |||
( ) | function application | f(x) berarti nilai fungsi f pada elemen x. | Jika f(x) := x2, maka f(3) = 32 = 9. |
of | |||
teori himpunan | |||
precedence grouping | Perform the operations inside the parentheses first. | (8/4)/2 = 2/2 = 1, but 8/(4/2) = 8/2 = 4. | |
umum | |||
f:X→Y | function arrow | f: X → Y means the function f maps the set X into the set Y. | Let f: Z → N be defined by f(x) = x2. |
from ... to | |||
teori himpunan | |||
o | function composition | fog is the function, such that (fog)(x) = f(g(x)). | if f(x) = 2x, and g(x) = x + 3, then (fog)(x) = 2(x + 3). |
composed with | |||
teori himpunan | |||
N ℕ | Bilangan asli | N berarti {0,1,2,3,...}, but see the article on natural numbers for a different convention. | {|a| : a ∈ Z} = N |
N | |||
Bilangan | |||
Z ℤ | Bilangan bulat | Z berarti {...,−3,−2,−1,0,1,2,3,...}. | {a : |a| ∈ N} = Z |
Z | |||
Bilangan | |||
Q ℚ | Bilangan rasional | Q berarti {p/q : p,q ∈ Z, q ≠ 0}. | 3.14 ∈ Q π ∉ Q |
Q | |||
Bilangan | |||
R ℝ | Bilangan real | R berarti {limn→∞ an : ∀ n ∈ N: an ∈ Q, the limit exists}. | π ∈ R √(−1) ∉ R |
R | |||
Bilangan | |||
C ℂ | Bilangan kompleks | C means {a + bi : a,b ∈ R}. | i = √(−1) ∈ C |
C | |||
Bilangan | |||
∞ | infinity | ∞ is an element of the extended number line that is greater than all real numbers; it often occurs in limits. | limx→0 1/|x| = ∞ |
infinity | |||
numbers | |||
π | pi | π berarti perbandingan (rasio) antara keliling lingkaran dengan diameternya. | A = πr² adalah luas lingkaran dengan jari-jari (radius) r |
pi | |||
Euclidean geometry | |||
|| || | norm | ||x|| is the norm of the element x of a normed vector space. | ||x+y|| ≤ ||x|| + ||y|| |
norm of; length of | |||
linear algebra | |||
∑ | summation | ∑k=1n ak means a1 + a2 + ... + an. | ∑k=14 k2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30 |
sum over ... from ... to ... of | |||
aritmatika | |||
∏ | product | ∏k=1n ak means a1a2···an. | ∏k=14 (k + 2) = (1 + 2)(2 + 2)(3 + 2)(4 + 2) = 3 × 4 × 5 × 6 = 360 |
product over ... from ... to ... of | |||
aritmatika | |||
Cartesian product | ∏i=0nYi means the set of all (n+1)-tuples (y0,...,yn). | ∏n=13R = Rn | |
the Cartesian product of; the direct product of | |||
set theory | |||
' | derivative | f '(x) is the derivative of the function fx, i.e., the slope of the tangent there. at the point | If f(x) = x2, then f '(x) = 2x |
… prime; derivative of … | |||
kalkulus | |||
∫ | indefinite integral or antiderivative | ∫ f(x) dx means a function whose derivative is f. | ∫x2 dx = x3/3 + C |
indefinite integral of …; the antiderivative of … | |||
kalkulus | |||
definite integral | ∫ab f(x) dx means the signed areax-axis and the graph of the function f between x = a and x = b. between the | ∫0b x2 dx = b3/3; | |
integral from ... to ... of ... with respect to | |||
kalkulus | |||
∇ | gradient | ∇f (x1, …, xn) is the vector of partial derivatives (df / dx1, …, df / dxn). | If f (x,y,z) = 3xy + z² then ∇f = (3y, 3x, 2z) |
del, nabla, gradient of | |||
kalkulus | |||
∂ | partial derivative | With f (x1, …, xn), ∂f/∂xi is the derivative of f with respect to xi, with all other variables kept constant. | If f(x,y) = x2y, then ∂f/∂x = 2xy |
partial derivative of | |||
kalkulus | |||
boundary | ∂M means the boundary of M | ∂{x : ||x|| ≤ 2} = {x : || x || = 2} | |
boundary of | |||
topology | |||
⊥ | perpendicular | x ⊥ y means x is perpendicular to y; or more generally x is orthogonal to y. | If l⊥m and m⊥n then l || n. |
is perpendicular to | |||
geometri | |||
bottom element | x = ⊥ means x is the smallest element. | ∀x : x ∧ ⊥ = ⊥ | |
the bottom element | |||
lattice theory | |||
|= | entailment | A ⊧ B means the sentence A entails the sentence B, that is every model in which A is true, B is also true. | A ⊧ A ∨ ¬A |
entails | |||
model theory | |||
|- | inference | x ⊢ y means y is derived from x. | A → B ⊢ ¬B → ¬A |
infers or is derived from | |||
propositional logic, predicate logic | |||
◅ | normal subgroup | N ◅ G means that N is a normal subgroup of group G. | Z(G) ◅ G |
is a normal subgroup of | |||
group theory | |||
/ | quotient group | G/H means the quotient of group Gmodulo its subgroup H. | {0, a, 2a, b, b+a, b+2a} / {0, b} = {{0, b}, {a, b+a}, {2a, b+2a}} |
mod | |||
group theory | |||
≈ | isomorphism | G ≈ H means that group G is isomorphic to group H | Q / {1, −1} ≈ V, where Q is the quaternion group and V is the Klein four-group. ((Wikipedia bahasa Indonesia, ensiklopedia bebas)) |
Simbol matematika dasar
Macam - macam himpunan bilangan
A. Himpunan bilangan asli
Himpunan bilangan asli adalah himpunan bilangan yang anggota-anggotanya merupakan bilangan bulat positif.
N = {1,2,3,4,5,6,......}
B. Himpunan bilangan prima
Himpunan bilangan prima adalah himpunan bilangan-bilangan asli yang hanya dapat dibagi dirinya sendiri dan satu, kecuali angka 1.
P = {2,3,5,7,11,13,....}
C. Himpunan bilangan cacah
Himpunan bilangan cacah adalah himpunan bilangan yang anggota-anggotanya merupakan bilangan bulat positif digabung dengan nol.
C = {0,1,2,3,4,5,6,....}
D. Himpunan bilangan bulat
Himpunan bilangan bulat adalah himpunan bilangan yang anggota-anggotanya seluruh bilangan bulat, baik negatif, nol, dan positif.
B = {...,-3,-2,-1,0,1,2,3,...}
E. Himpunan bilangan rasional
Himpunan bilangan rasional adalah himpunan bilangan yang anggota-anggonya merupakan bilangan yang dapat dinyatakan sebagai:
p/q dimana p,q Î bulat dan q ¹ 0 atau dapat dinyatakan sebagai suatu desimal berulang.
contoh: 0,-2, 2/7, 5, 2/11, dan lain lain
F. Himpunan bilangan irasional
Himpunan bilangan irasional adalah himpunan bilangan yang anggota-anggotanya tidak dapat dinyatakan sebagai sebagai p/q atau tidak dapat dinyatakan sebagai suatu desimal berulang.
contoh: log 2, e, Ö7
G. Himpunan bilangan riil
Himpunan bilangan riil adalah himpunan yang anggota-anggotanya merupakan gabungan dari himpunan bilangan rasional dan irasional.
contoh: log 10, 5/8, -3, 0, 3
H. Himpunan bilangan imajiner
Himpunan bilangan imajiner adalah himpunan bilangan yang anggota-anggotanya merupakan i (satuan imajiner) dimana i merupakan lambang bilangan baru yang bersifat i² = -1
contoh: i, 4i, 5i
I. Himpunan bilangan kompleks
Himpunan bilangan kompleks adalah himpunan bilangan yang anggota-anggotanya (a + bi) dimana a, b Î R, i² = -1, dengan a bagian riil dan b bagian imajiner.
contoh: 2-3i, 8+2
Operasi Matematika Dasar
Mengenal Angka
Penjumlahan
Pengurangan
Perkalian
Pembagian
Penggabungan Operasi Matematika
Operasi Bilangan Pecahan
Cara membaca bilangan pecahan ini adalah dengan menggunakan kata “per”, jadi bilangan pecahan pada contoh diatas dibaca “A per B”. Khusus untuk nilai pembilangnya 1, maka umumnya dibaca dengan kata depan “seper”. Jadi jika ada bilangan pecahan “1/3” maka ia dapat dibaca “sepertiga” atau bisa juga dibaca “satu per tiga”. Juga khusus untuk bilangan pecahan 1/2, selain dapat dibaca dengan kata “seperdua” atau “satu per dua”, seringkali ia dibaca juga dengan kata “separo”, “separuh”, atau “setengah”.
Penjumlahan Bilangan Pecahan
Perhatikan angka 3 sebagai faktor pengali pada bilangan pecahan yang pertama. Angka 3 ini didapat dari nilai 6 dibagi pembaginya (6 : 2 = 3). Begitu juga angka 2 sebagai faktor pengali bilangan pecahan yang kedua, didapat dari nilai 6 dibagi pembaginya (6 : 3 = 2).
Pengurangan Bilangan Pecahan
4/2 = 2
4/6 - 3/6 = 1/6